
Introduction
Apache Spark Architecture

Working with Apache Spark

Introduction to Spark
DSCI-D 351 Big Data Analytics

Yuhui Hong (yuhhong@iu.edu)

Luddy School of Informatics, Computing, and Engineering
Indiana University Bloomington

September 3, 2024

Yuhui Intro Spark

Introduction
Apache Spark Architecture

Working with Apache Spark

Overview

1 Introduction
Big Data and Distributed Data Processing
Getting to Know Apache Spark

2 Apache Spark Architecture
Key Components and Architecture
Two Core Abstractions
Additional Data Structures Supported

3 Working with Apache Spark
Example of MapReduce Algorithm

Yuhui Intro Spark

Introduction
Apache Spark Architecture

Working with Apache Spark

Big Data and Distributed Data Processing
Getting to Know Apache Spark

What is Big Data?

Big data primarily refers to data sets that are too large or complex
to be dealt with by traditional data-processing application software.

from Wikipedia

Yuhui Intro Spark

Introduction
Apache Spark Architecture

Working with Apache Spark

Big Data and Distributed Data Processing
Getting to Know Apache Spark

Challenges of Big Data Processing

Scalability: Traditional systems struggle with horizontal
scaling for large data volumes.

Speed: Processing large datasets can be slow, especially for
real-time analysis.

Complexity: Big Data often comes in various formats
(structured, unstructured, semi-structured), which traditional
systems are not designed to handle efficiently.

Yuhui Intro Spark

Introduction
Apache Spark Architecture

Working with Apache Spark

Big Data and Distributed Data Processing
Getting to Know Apache Spark

Distributed Data Processing

In distributed data processing, tasks on large-scale data are broken
down into smaller units that can be processed in parallel. Popular
distributed computing frameworks include Apache Hadoop, Apache
Spark, Google BigQuery, Apache Flink, Dask, etc.

Yuhui Intro Spark

Introduction
Apache Spark Architecture

Working with Apache Spark

Big Data and Distributed Data Processing
Getting to Know Apache Spark

Brief History of Apache Spark

1 Origins at UC Berkeley (2009-2010): Spark was developed in 2009 by a
team at UC Berkeley’s AMPLab, led by Matei Zaharia. It was designed as
a faster alternative to Hadoop’s MapReduce, focusing on in-memory
processing for improved speed in iterative tasks.

2 Open Sourcing and ASF Project (2010-2013): Spark was open-sourced in
2010 and became an Apache Software Foundation (ASF) project in 2013.
This transition accelerated its development and adoption in the big data
community.

3 Rapid Growth and Ecosystem Expansion (2014-2015): By 2014, Spark
became the most active project in the Apache community. During this
time, key components like Spark SQL, Spark Streaming, MLlib, and
GraphX were introduced, expanding its capabilities.

4 Widespread Industry Adoption (2015-Present): Spark saw rapid adoption
across industries, supported by companies like Databricks, IBM, and
Cloudera. It has since become a leading tool for big data analytics,
known for its speed, flexibility, and robust ecosystem.

Yuhui Intro Spark

Introduction
Apache Spark Architecture

Working with Apache Spark

Big Data and Distributed Data Processing
Getting to Know Apache Spark

Apache Spark’s ecosystem of connectors

Yuhui Intro Spark

Introduction
Apache Spark Architecture

Working with Apache Spark

Big Data and Distributed Data Processing
Getting to Know Apache Spark

Apache Spark Core and API Stack

Spark Core is the foundation of Apache Spark. It is responsible for
memory management, fault recovery, scheduling, distributing and
monitoring jobs, and interacting with storage systems.
Spark offers four distinct components as libraries for diverse
workloads: Spark SQL, Spark Structured Streaming, Spark MLlib,
and GraphX.

Yuhui Intro Spark

Introduction
Apache Spark Architecture

Working with Apache Spark

Key Components and Architecture
Two Core Abstractions
Additional Data Structures Supported

Overview

(1) Spark driver breaks down the application into tasks, requests
resources from the cluster manager, and distributes tasks to
executors.
(2) Cluster manager allocates resources and informs executors.
(3) Spark executors execute the tasks and perform computations
on data, sending results back to the driver.

Yuhui Intro Spark

Introduction
Apache Spark Architecture

Working with Apache Spark

Key Components and Architecture
Two Core Abstractions
Additional Data Structures Supported

Spark Driver, Cluster Manager, and Spark Excutor

Spark driver: The Spark driver, which initializes the
SparkSession, handles multiple tasks: it interacts with the
cluster manager to request resources (CPU, memory, etc.),
converts Spark operations into DAG computations, schedules
them, and distributes tasks to executors. Once resources are
allocated, it directly communicates with the executors.

Cluster Manager: The cluster manager allocates resources
for the Spark application’s nodes. Spark supports four cluster
managers: local, standalone, YARN (client), YARN (cluster),
and Kubernetes.

Spark Executor: A Spark executor runs on each worker node,
executing tasks and communicating with the driver program.
Typically, only one executor per node is used.

Yuhui Intro Spark

Introduction
Apache Spark Architecture

Working with Apache Spark

Key Components and Architecture
Two Core Abstractions
Additional Data Structures Supported

‘SparkSession’

SparkSession: Spark contexts (e.g., SparkContext,
SQLContext, HiveContext, StreamingContext) provide
specialized functionalities for different types of data
processing,

while SparkSession unifies these functionalities into a single
entry point for managing Spark applications and querying
structured and unstructured data in Spark 2.0 and later.

Yuhui Intro Spark

Introduction
Apache Spark Architecture

Working with Apache Spark

Key Components and Architecture
Two Core Abstractions
Additional Data Structures Supported

Create and Close a ‘SparkSession’

In Python:

from pyspark.sql import SparkSession

Create a SparkSession

spark = SparkSession.builder \

.appName("Example") \

.getOrCreate()

Load and process data

Stop the SparkSession

spark.stop()

In Scala:

import org.apache.spark.sql.SparkSession

// Create a SparkSession

val spark = SparkSession.builder

.appName("Example")

.getOrCreate()

// Load and process data

// Stop the SparkSession

spark.stop()

Yuhui Intro Spark

Introduction
Apache Spark Architecture

Working with Apache Spark

Key Components and Architecture
Two Core Abstractions
Additional Data Structures Supported

RDDs and DAG

Resilient Distributed Datasets (RDDs) is Spark’s core data
structure, representing distributed, immutable collections of data
that can be processed in parallel. RDDs support:

Transformations: Lazy operations like map and filter that
define a new RDD.

Actions: Operations like collect and count that trigger
computation and return results.

Directed Acyclic Graph (DAG) represents the sequence of
transformations and actions applied to RDDs. Spark builds a DAG
for each job, optimizing the execution plan and managing
dependencies to ensure efficient and fault-tolerant processing.

Yuhui Intro Spark

Introduction
Apache Spark Architecture

Working with Apache Spark

Key Components and Architecture
Two Core Abstractions
Additional Data Structures Supported

Transformations and Actions on RDDs

Create an RDD

rdd = spark.sparkContext.parallelize([1, 2, 3, 4])

Perform transformations

rdd2 = rdd.map(lambda x: x * 2) # Multiply each element by 2

rdd3 = rdd2.filter(lambda x: x > 4) # Filter elements greater than 4

Perform action

result = rdd3.collect() # Collect results to the driver

Print results

print(result) # Output will be [6, 8]

In this example, Spark doesn’t start processing the data until collect() is called.

Once an action is triggered, Spark optimizes and executes the chain of transformations

to produce the final result.

Yuhui Intro Spark

Introduction
Apache Spark Architecture

Working with Apache Spark

Key Components and Architecture
Two Core Abstractions
Additional Data Structures Supported

DAG of Above Transformations and Actions

[1, 2, 3, 4] # Initial RDD: rdd

|

| Stage 1: map(lambda x: x * 2)

v

[2, 4, 6, 8] # Transformed RDD: rdd2

|

| Stage 1: filter(lambda x: x > 4)

v

[6, 8] # Filtered RDD: rdd3

|

| Stage 1: collect()

v

[6, 8] # Result: result

Yuhui Intro Spark

Introduction
Apache Spark Architecture

Working with Apache Spark

Key Components and Architecture
Two Core Abstractions
Additional Data Structures Supported

DataFrames, Graphs, etc.

In addition to RDDs, Spark supports various other data structures
through its specialized libraries, such as DataFrames via
Spark SQL, Graphs via GraphX, and machine learning models via
MLlib [2].

Yuhui Intro Spark

Introduction
Apache Spark Architecture

Working with Apache Spark

Key Components and Architecture
Two Core Abstractions
Additional Data Structures Supported

Transformations and Actions on DataFrame

Create a DataFrame

data = [("Alice", 30), ("Bob", 25), ("Cathy", 28)]

columns = ["Name", "Age"]

df = spark.createDataFrame(data, columns)

Show the original DataFrame

print("Original DataFrame:")

df.show() # This is an action on DataFrame.

Original DataFrame:

+-----+---+

| Name|Age|

+-----+---+

|Alice| 30|

| Bob| 25|

|Cathy| 28|

+-----+---+

Yuhui Intro Spark

Introduction
Apache Spark Architecture

Working with Apache Spark

Key Components and Architecture
Two Core Abstractions
Additional Data Structures Supported

Transformations and Actions on DataFrame (cont.)

from pyspark.sql.functions import col

Perform a transformation: filter rows where age is greater than 25

df_filtered = df.filter(col("Age") > 25)

Perform another transformation: add a new column with age incremented by 1

df_transformed = df_filtered.withColumn("Age Plus One", col("Age") + 1)

Show the transformed DataFrame

print("Transformed DataFrame:")

df_transformed.show()

Transformed DataFrame:

+-----+---+-----------+

| Name|Age|Age Plus One|

+-----+---+-----------+

|Alice| 30| 31|

|Cathy| 28| 29|

+-----+---+-----------+

Yuhui Intro Spark

Introduction
Apache Spark Architecture

Working with Apache Spark
Example of MapReduce Algorithm

Finding Maximum Temperatures by City

Assume you have five files and each file contains two columns.
These columns represent a key and a value in Hadoop terms that
represent a city and the corresponding temperature recorded in
that city for the various measurement days.

For example, the first file contains:

Toronto, 20

Whitby, 25

New York, 22

Rome, 33

Yuhui Intro Spark

Introduction
Apache Spark Architecture

Working with Apache Spark
Example of MapReduce Algorithm

Implement MapReduce Algorithm: Initialization

Let’s implement it based on RDDs. So, we first need to initialize a
SparkContext and load data to it.

from pyspark import SparkContext

Initialize Spark Context

sc = SparkContext(master="local", appName="TemperatureMax")

Read the data from text files

data = sc.textFile("temperature_data/*.txt")

Yuhui Intro Spark

Introduction
Apache Spark Architecture

Working with Apache Spark
Example of MapReduce Algorithm

Implement MapReduce Algorithm: Map Phase

Map phase: Parse each line into a city and temperature tuple

def parse_line(line):

city, temp = line.split(',')

return city.strip(), int(temp.strip())

city_temps = data.map(parse_line)

If you apply collect() to city_temps, you will see that city_temps
contains:

[

('Toronto', 20),

('Whitby', 25),

('New York', 22),

('Rome', 33),

('Toronto', 18),

('Whitby', 27),

......

]

Yuhui Intro Spark

Introduction
Apache Spark Architecture

Working with Apache Spark
Example of MapReduce Algorithm

Implement MapReduce Algorithm: Reduce Phase

Reduce phase: Reduce by key to find the maximum temperature for each city

max_temps_by_city = city_temps.reduceByKey(lambda x, y: max(x, y))

Collect and display the results

results = max_temps_by_city.collect()

for city, max_temp in results:

print(f"{city}: {max_temp}")

The output will look like this:

Toronto: 32

Whitby: 27

New York: 33

Rome: 38

Yuhui Intro Spark

Introduction
Apache Spark Architecture

Working with Apache Spark
Example of MapReduce Algorithm

DAG of Above Transformations and Actions

+-----------------------------+

| Stage 1: Reading Data |

|-----------------------------|

| sc.textFile() |

+-------------+---------------+

|

v

+-----------------------------+

| Stage 1: Map Transformation |

|-----------------------------|

| map(parse_line) |

+-------------+---------------+

|

v

+-----------------------------+

| Stage 2: Reduce Transformation|

|-----------------------------|

| reduceByKey(max) |

+-------------+---------------+

|

v

+-----------------------------+

| Action: Collecting Results |

|-----------------------------|

| collect() |

+-----------------------------+

Yuhui Intro Spark

Introduction
Apache Spark Architecture

Working with Apache Spark
Example of MapReduce Algorithm

References

Jules, TD Damji, Brooke Wenig, and D. Lee. Learning Spark:
Lightning-Fast Data Analytics. O’Reilly Media, Inc., 2020.

Apache Spark. Python API Documentation. 2024. Available at:
https://spark.apache.org/docs/latest/api/python/index.html

(Accessed: 2024-08-31).

Yuhui Intro Spark

https://spark.apache.org/docs/latest/api/python/index.html

Introduction
Apache Spark Architecture

Working with Apache Spark
Example of MapReduce Algorithm

Take Away

Components and architecture of Spark

Spark Driver
Cluster Manager
Spark Executors

Two core abstracts in Spark: RDDs and DAG

Using Spark to implement a simple MapReduce algorithm

Thank you!

Yuhui Intro Spark

	Introduction
	Big Data and Distributed Data Processing
	Getting to Know Apache Spark

	Apache Spark Architecture
	Key Components and Architecture
	Two Core Abstractions
	Additional Data Structures Supported

	Working with Apache Spark
	Example of MapReduce Algorithm

