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Background | LC-MS retention time prediction
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Background | LC-MS retention time prediction

Neural 
Networks [1, 2]

Small molecules 
datasets

𝑡′𝑟1

Predicted retention timeMolecule

𝑡′𝑟2
…………

under the same 
standard condition

[1] Domingo-Almenara X, et al. Nat. Commun. 10, 5811 (2019)
[2] Xue J, et al. Bioinformatics 40.3, btae084 (2024)

Instrumentation

LC System Agilent 1100/1200 series

Mass 
Spectrometer

Quadrupole-time of flight (Q-TOF) 
G6538A (Agilent Technologies)

Column Zorbax Extend-C18 reverse-phase (2.1 
× 50 mm, 1.8 μm, Agilent Technologies)

Chromatographic Conditions

Flow rate 100 μL/min

Mobile phase A Water + 0.1% formic acid

Mobile phase B Acetonitrile + 0.1% formic acid

Dead volume 40 μL

Dwell volume 900 μL

METLIN-SMRT 
80,038 small molecules [1]



Challenge | limited data for different conditions

Neural 
Networks

Retention time dataset (RT) for 
standard condition
(e.g. METLIN-SMRT [1]) 

Retention time (RT) dataset 
for specialized conditions

(e.g. RepoRT [3]) ……

Insufficient 
data for training

Only 10 datasets ≥ 300 compounds

Compounds number (isomeric records) 
distribution of RT datasets in the RepoRT 

database [1] before preprocessing
[1] Domingo-Almenara X, et al. Nat. Commun. 10, 5811 (2019)
[3] Kretschmer F, et al. Nat. Methods 21.2, 153-155 (2024)



Challenge | limited data for different conditions

Potential solution 1: 
Converting retention times to retention indices [4]

condition A
RT

condition B
RT

RT under
condition A

retention indices

polynomial 
function for 
condition A

[4] Kretschmer F, et al. arXiv preprint (2024)



Challenge | limited data for different conditions

condition A
RT

condition B
RT

RT under
condition B

retention indices

polynomial 
function for 
condition B

[4] Kretschmer F, et al. arXiv preprint (2024)

Potential solution 1: 
Converting retention times to retention indices [4]



Challenge | limited data for different conditions

condition A
RT

condition B
RT

condition C
RT

RT under
condition C

retention index

polynomial 
regression does 

not work

×Potential solution 1: 
Converting retention times to retention indices



Challenge | limited data for different conditions

Potential solution 2: Transfer learning [5, 6]

Upstream dataset, 
e.g. METLIN-SMRT [5], 

LC-MSMS datasets [6], etc.

pre-training

Downstream 
dataset

fine-tuning

[5] Kwon Y, et al. Anal. Chem. 95.47, 17273-17283 (2023)
[6] Hong Y, et al. Bioinformatics 39.6, btad354 (2023)



Challenge | 
limited data for 
different conditions

Potential solution 2: 
Transfer learning  [5]

Performance of Graph 
Isomorphism Network (GIN) on 
45 datasets from the RepoRT 
database using METLIN-SMRT 
pre-training [3]

[5] Kwon Y, et al. Anal. Chem. 95.47, 17273-17283 (2023)



Challenge | limited data for different conditions

Potential solution 2: Transfer learning

Upstream dataset, 
e.g. METLIN-SMRT

pre-training

Downstream 
dataset

fine-tuning

×
• Large domain gap between datasets
• Limited downstream data



Task-Specific Transfer Learning (TSTL)

Our solution: 

Step 1: Joint datasets pre-training

Step 2: Integration of multiple fine-tuned models



Methodology | task-specific transfer learning

Upstream dataset
+ Downstream dataset

Downstream 
dataset

Efficient fine-tuning

Step 1: Joint datasets pre-training



Methodology | task-specific transfer learning

Optimizer methods

pre-trained model
best initialization for 

specific downstream task

ℒ ∅



Methodology | task-specific transfer learning

Optimizer methods

fine-tuned modelpre-trained model
best initialization for 

specific downstream task

ℒ ∅ = 𝑙𝑡 𝜃𝑡



Methodology | task-specific transfer learning

ℒ ∅ = 𝑙𝑡 𝜃𝑡 = 𝑙𝑡 ∅ − 𝛼∇∅𝑙𝑡(∅)

inner loop: update 𝜃𝑡 initialized as ∅ 
on downstream task

learning rate: 𝛼, 𝛽

Optimizer methods



Methodology | task-specific transfer learning

ℒ ∅ = 𝑙𝑡 𝜃𝑡 = 𝑙𝑡 ∅ − 𝛼∇∅𝑙𝑡(∅)

inner loop: update 𝜃𝑡 initialized as ∅ 
on downstream task

learning rate: 𝛼, 𝛽

∅ ← ∅ − 𝛽∇∅𝑙up(∅)
outer-loop: update randomly 
initialized ∅ according to 
upstream task 

Optimizer methods



Methodology | task-specific 
transfer learning

Upstream dataset
+ Downstream dataset

Downstream 
dataset

Integration

Step 2: Integration of multiple fine-tuned models



Results | data preprocessing

Compounds number distribution of RepoRT database [3] after preprocessing

[3] Kretschmer F, et al. Nat. Methods 21.2, 153-155 (2024)

Dataset ID # Compounds

0027 104

0183 121

0184 124

0264 96

0401 235

0420 162

0432 102

0435 191

TL-difficult datasets 
(TL 𝑅2 < 0.8)



Results | diverse and correlation of up stream tasks
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Results | performance of TSTL on retention time prediction

7 × 5 results



Results | performance of TSTL on retention time prediction

SC ⟹ TL-SMRT ⟶ TL-ALL ⟶ TSTL-SMRT ⟹ TSTL-ALL



Takeaways

• We designed Task-Specific Transfer Learning (TSTL) for training neural 
networks with limited data

• TSTL incorporates 2 steps: joint pre-training and a greedy integration strategy

• Experiments demonstrate that TSTL outperforms TL on all TL-difficult datasets 
in RepoRT database 

Future work

• Apply TSTL methodology to more predictions

• Enhance integration considering experimental condition correlations
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Visit other works from our lab!

TP 057: AI-driven visual proteomics for blood-based 
Alzheimer’s disease biomarker discovery by LC-MS/MS 
and deep neural networks. Qingyang Xiao et al. 

WP 451: Metabolite identification by spectral searching 
against predicted spectral library. Chhavi Thakur et al. 
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Manuscript is under preparing.
Follow this GitHub repository for any updates!
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