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From MS/MS Prediction to Formula Prediction

Codes are available on GitHub.

Online service are available on GNPS. 
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From MS/MS Prediction to Formula Prediction

Performances of MS/MS Prediction on Agilent QTOF [M+H]+

Positive ion mode Negative ion mode

# spectra # compounds # spectra # compounds

NIST20 27085 2492 1749 193

Agilent 

PCDL
35373 11239 8362 2942

Unique 62458 13295 10111 3080



From MS/MS Prediction to Formula Prediction
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Related Work: SIRIUS4

• Fragmentation tree[1][2] can only process single-

charged MS/MS because it relies on the neutral

loss, e.g., H2O.

• Computations are time consuming.

[1] Dührkop, Kai, et al. "SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information." Nature methods 16.4 (2019): 299-302.

[2] Rasche, Florian, et al. "Computing fragmentation trees from tandem mass spectrometry data." Analytical Chemistry 83.4 (2011): 1243-1251.

Fragmentation tree that explains the experimentally observed
MS/MS fragmentation pattern of the ion withm/z 387.322.

H2O



Our Methods
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Refined chemical 

formula (3rd stage) 𝑟0 & 

Molecular mass

𝑖 = 1, 𝑟𝑒𝑐 = []
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Our Methods (Post-processing)
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[3] Kind, Tobias, and Oliver Fiehn. "Seven Golden Rules for heuristic filtering

of molecular formulas obtained by accurate mass spectrometry." BMC

bioinformatics 8.1 (2007): 1-20.



Our Methods (SENIOR rule)

[3] Kind, Tobias, and Oliver Fiehn. "Seven Golden Rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry." BMC

bioinformatics 8.1 (2007): 1-20.

SENIOR rule:

1. The sum of valences or the total number of atoms having odd valences is even;

2. The sum of valences is greater than or equal to twice the maximum valence;

3. The sum of valences is greater than or equal to twice the number of atoms minus 1.

e.g., C9H14O3 passes SENIOR rule. 

4 × 9 + 1 × 14 + 2 × 3 = 56; The valences of C, H, and O are 4, 1, and 2, respectively. 

56 ≥ 2 × 4; 

56 ≥ 2 × 9 + 14 + 3 − 1 = 50; 



Experiment Data Preprocessing

We collected 70,111 spectra of 14,376 compounds with masses from the Quadrupole
Time-of-Flight (Q-TOF) MS/MS library of Agilent and NIST20.

The compounds are randomly split into training and test sets with a ratio of 9:1.

1. The spectra with less than 5 peaks are removed because they are typically unreliable;

2. The spectra with m/z greater than 1500 are discarded because only a few spectra are

from such large molecules;

3. Only the spectra with the precursor types of M+H and M-H are retained;

4. Only the compounds with fewer than 300 atoms are retained because only a few

compounds in the library have more than 300 atoms;

5. Only the molecules composed by the most common atoms (C, H, O, N, F, S, Cl, P, B, I

and Br) are retained.



Results on Single Charged MS/MS (accuracy)

Ours (pred) denotes the results from machine learning model without post-processing. 



Results on Single Charged MS/MS (speed)

The compounds have been arranged in ascending order based on their mass. 

Accumulated Running Time



Results on Double Charged MS/MS

# Spectra # Compound

256 197

Performance of Ours (pred) on [M+2H]2+

Performance of Ours on [M+2H]2+

The double charged MS/MS

from Agilent PCDL and

NIST20 are gathered as an

additional test set.

The model trained on single

charged MS/MS are applied

directly to the double charged

MS/MS.



• We presented a deep learning model

with post-processing for chemical

formula prediction achieving state-of-

the-art performance on QTOF MS/MS.

• Our model is efficient, and it can be

extended to MS/MS with different

adducts.

Please find the codes of 

3DMolMS on GitHub. 

We will release the codes 

for chemical formula 

prediction soon! 

Thank you!

Takeaways



Acknowledgement

We acknowledge the Center for Bioanalytical Metrology (CBM), an NSF Industry-

University Cooperative Research Center, for providing funding under grant NSF IIP-

1916645. This work was also partially supported by National Science Foundation

grant DBI-2011271.

We appreciate Dr. Sujun Li, Dr. Christopher J. Welch, and Dr. Shane Tichy for their

contribution of MS/MS data collection and invaluable advice on data preprocessing.

We are indebted to Dr. Mingxun Wang for his invaluable advice and his effort to

build the online service of 3DMolMS.

Funding


	Slide 1: A Machine Learning Model for Chemical Formula Prediction Using Tandem Mass Spectra of Compounds
	Slide 2: From MS/MS Prediction to Formula Prediction
	Slide 3: From MS/MS Prediction to Formula Prediction
	Slide 4: From MS/MS Prediction to Formula Prediction
	Slide 5: Related Work: SIRIUS4
	Slide 6: Our Methods
	Slide 7: Our Methods (Post-processing)
	Slide 8: Our Methods (SENIOR rule)
	Slide 9: Experiment Data Preprocessing
	Slide 10: Results on Single Charged MS/MS (accuracy)
	Slide 11: Results on Single Charged MS/MS (speed)
	Slide 12: Results on Double Charged MS/MS
	Slide 13
	Slide 14

